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1. INTRODUCTION 

There is a growing consensus that, in order to achieve major improvement in 
software production and maintenance, the entire programming process must be 
formalized and given machine support (see, for example, the joint report of 
several researchers [7]). The keystone of such an approach is the formal specifi- 
cation of the requirements of the task to be programmed. Our specification group 
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at ISI’ has pursued this philosophy in developing a specification language and 
companion techniques to support the transformational derivation of implemen- 
tations from specifications. Our views and techniques are elaborated and defended 
elsewhere [ 11. 

The focus here is the specification and development of composite systems, by 
which I mean systems whose realization will be multiple interacting components. 
The software development task may be to implement one or several of these 
components. The remaining components of the system form the implementation’s 
environment, and might consist of other software systems, physical machinery, 
human beings, and so on. 

A specification should be a lucid description of a task or activity. Its lucid 
nature derives from an emphasis on a natural description of the task, without 
regard for implementation concerns. Hence, when a complex system is to be 
realized as a combination of interacting components, development of those 
components should commence from a specification of the whole system. To be 
natural and lucid, such a specification should be of the behavior required of that 
composite system. The decomposition of that system into components should be 
specified separately. These specifications disregard the implementation concern 
of how to allocate behaviors to each of the components so that their combination 
will realize the composite system. 

We call this style of specification closed-system specification, to emphasize 
that the specification of the composite system is self-contained, that is, closed, 
in that there is no interaction with anything outside of the specification. In 
contrast, a specification that has an interface to some unspecified environment 
would be “open.” 

The ensuing sections present the following: 

-The benefits of the closed-system style of specification and its role in the 
software development process. 

-Some specification language features that are supportive of the closed-system 
style of specification; these features have been embodied in our specification 
language, Gist. 

-Additional specification language features that formalize the intuitive notions 
of “choice” and “responsibility,” of use in expressing closed-system specifica- 
tions and stages in developments from closed to open specifications. It is shown 
how Gist could be extended to include these features. 

-A lengthy example to illustrate the above concepts put to use. 
-Related research and conclusions. 

2. ELABORATION OF THE CLOSED-SYSTEM STYLE OF SPECIFICATION 

Specification of a composite system is divided into a specification of the behavior 
required of that composite system and a specification of how that system is to be 
decomposed into components. For example, consider the scenario of elevators 

1 Headed by B. Balzer, and currently including D. Cohen, M. Feather, N. Goldman, L. Johnson, 
B. Swartout, D. Wile, and K. Yue. Former members who have made significant contributions to this 
research are W. Chiu, L. Erman, S. Fickas, P. London, and J. Mostow. 
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serving passengers in a multistory building. The components are the individual 
passengers, the elevator controller, and the elevator mechanism. The behavior 
required of this composite system is the rapid transportation of passengers to 
their destination floors. Decomposition defines what interaction is allowed be- 
tween these components, for example, the controller may be allowed to issue 
start/stop commands to the elevator motors, thus causing movement of elevators; 
passengers may be allowed to signal to the controller their presence at a floor 
and their desire to be transported in some direction. 

The potential benefits of this style of specification and some of its implications 
for the subsequent implementation effort are discussed in the sections that 
follow. 

2.1 Potential Benefits of Closed-System Specification 

2.1.1 Explicit Description of a Whole System. Contrast the closed-system style 
of specification, in which the whole system is specified explicitly, to the open 
style, in which a single component interacts through some interface with an 
environment that is not explicitly specified. In the former, the full power and 
richness of the specification language can be used to describe the assumptions 
that the component to be implemented may make regarding its environment. In 
the latter, those assumptions must be expressed as part of the interface, the 
language for which is typically not the full specification language (e.g., it might 
be limited to applicability conditions on the component’s externally invocable 
routines). 

A closed-system specification may be used to explore the implications and 
ramifications of the system. Because the whole system is specified, it may serve 
as a self-contained prototype suitable for immediate testing. Testing might take 
the form of symbolic evaluation, simulation, property proving, or any combination 
of these. Just as specification benefits from the ability to describe system-wide 
behaviors, so these investigative methods are enhanced by the ability to use them 
to explore system-wide behaviors. 

2.1.2 Explicit Description of Decomposition. When a system is decomposed 
into components, the components are usually restricted in the extent to which 
they may interact with one another. The decomposition determines what 
information “belongs to” a component and which activities are done by which 
components. It also determines the restrictions on interactions among compo- 
nents, that is, what information belonging to one component may be accessed or 
affected by an activity of another component. For example, within the elevator 
scenario, a passenger’s destination is information “belonging to” that passenger. 
The controller is restricted from affecting that value or from accessing it. 

The implementations of a system’s components, when combined, must achieve 
the specified system behavior while complying with the restrictions on interac- 
tions among components. 

The specification of a system’s decomposition should be explicit and separate 
from the specification of that system’s behavior. Each of these is a specification, 
and hence may be expressed without regard to the restrictions implied by 
the decomposition. For example, in specifying the behavior of elevators, part 
of the specification may be that an elevator containing passengers must move 
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in the direction of the destinations of those passengers-this system behavior is 
expressed in terms of elevator locations and passenger locations and destinations, 
without regard to the way the elevator component is restricted in its access to 
knowledge of passengers and vice versa. 

2.1.3 Component Behaviors Derived from System Behavior and Decomposi- 
tion. An especially powerful consequence of the separate and explicit specifica- 
tions of overall system behavior and system decomposition is that they serve as 
the starting point from which to derive the behaviors required of the components. 
Contrasting this with an open specification of a component, we see that the latter 
must have decomposed the composite system behavior as a prerequisite to 
expressing it. 

By deriving component behavior from specifications of system behavior and 
decomposition, the derivation process itself can be formally recorded and sup- 
ported. Further, it retains maximum freedom of choice among alternative decom- 
positions of system behavior into component behaviors. In contrast, starting the 
development from an already decomposed system leaves a larger gap between 
what is formally specified (individual component behaviors) and what is the 
unformalized intent (system behavior). Also, in order to express the individual 
component behaviors, one out of possibly many decompositions of the system 
behavior must already have been selected, thus prematurely constraining the 
options for implementing that component. 

2.2 Development-Closed-System Specifications to Implementations 
of Components 

2.2.1 Development Process. The closed-system specification of a composite 
system, together with a specification of its decomposition into components, serves 
as the starting point for developing implementations of one or more of those 
components. Since the closed-system style implicitly defines component behavior, 
a major goal of such a development will be to derive an explicit definition from 
this. In all but the most trivial of examples, this will not be accomplished in a 
single step, but rather will involve the gradual decomposition of system-wide 
behavior into individual behaviors allocated to the components. The result will 
be an explicit specification of the behavior required of an individual component, 
in the open style of specification. This paper focuses on language features that 
facilitate expression of closed-system specifications and intermediate stages 
toward open-style specifications of their components. 

2.2.2 Intertwining of Specification and Implementation. Swartout and Balzer 
[ 141 argue that specification and implementation are strongly intertwined. They 
suggest that we should not expect to develop software by first constructing a 
specification without any consideration of resource limitations, and thereafter 
transforming that specification to introduce efficiency while completely preserv- 
ing its functional behavior. Rather, the ideals of the specification will undergo 
multiple modifications as implementation reveals necessary compromises. This 
blurs the distinction between specification and implementation. We infer that, 
to achieve our goal of offering automated support to software production and 
maintenance, we must record and support this intertwining as part of the 
development process. 
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Developments from composite system specifications give rise to new forms of 
intertwining. The ideals of a composite system specification are the behaviors 
required of the overall system and the decorhposition of that system into com- 
ponents. In realizing such a system as interacting components, it may be neces- 
sary to modify these ideals as a result of interactions discovered during the 
development process. For example, in order to coordinate activities in different, 
components it may be necessary to extend the components’ interfaces (defined 
in the decomposition) to allow more communication between them. Alternatively, 
the interface might be left unchanged, and instead the overall system behavior 
extended to include the behaviors that result from combining uncoordinated 
components. 

3. A LANGUAGE FOR CLOSED-SYSTEM SPECIFICATION 

Our specification group at IS1 has developed a specification language, Gist. The 
origin of this language is Balzer and Goldman’s study of the principles of good 
software specification [2]. Three of their proposed principles are that 

--the specification must encompass the system, of which software is a component; 
--the specification must encompass the environment in which the system oper- 

ates; and 
--the specification must be operational. 

These principles are clearly pertinent to the closed-system style of specifica- 
tion; and hence in constructing Gist to satisfy these principles, we believe we 
have emerged with a language supportive of such a style. Of course, Gist’s 
language features that provide this support could probably be used with other 
specification languages without too much difficulty. 

A comprehensive description of Gist is beyond the scope of this paper; instead, 
I will present only a summary of the language, and detail only those parts which 
are of immediate relevance to closed-system specification. For a fuller description 
of both the language and the motivations that shaped its design, see [3]. 

3.1 Denotation of a Gist Specification 

The overall meaning of a Gist specification of some application is as follows: 

The specification denotes the set, of acceptable histories that the application 
may exhibit. Each history comprises an initial state and a sequence of 
transitions. The transitions correspond to activity in the application domain; 
applying a sequence of transitions to the initial state yields the state 
corresponding to the application domain after those transitions have oc- 
curred. States model the application domain at instants in time by means of 
objects and associations among those objects; transitions modify the exist- 
ence of objects and associations among them. 

The transition structure of each “history” facilitates the expression of dynamic 
activity taking place over time. This structure permits the direct modeling of 
applications such as process control, communication systems, and operating 
systems, where the system activity is not easily characterized as a function 
mapping inputs to outputs, but is an ongoing series of interdependent interactions 
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that affect the underlying domain. A specification denotes a set of such histories 
to represent the possibly many alternative histories that the system may exhibit. 
The “objects and associations among those objects” comprise Gist’s data- 
modeling capability, which is essentially a typed entity-relationship model. This 
model is appropriate for specification because of its neutrality toward any 
particular representation that might be chosen for implementation. 

This paper is not concerned with the details of Gist’s data model (namely, 
what comprises states and what are legal transitions between states), so some 
simplifying abstractions and assumptions are made. A transition is regarded as 
simply a set? of primitive changes called deltas, where the only property of deltas 
is that there is an equality relation between them. It is assumed that all histories 
begin in the same initial staL3 

The simplified denotation is thus 

a Gist specification denotes a behavior, which is a set of histories; 
a history is a sequence of transitions; 
a transition is a set of deltas; 
a delta is primitive; there is an equality relation over deltas. 

3.2 Determining the Denotation-Generation and Pruning 

A Gist specification comprises a generative component, which denotes a set of 
candidate histories, and constraints, which denote predicates on histories. The 
denotation of the specification is the set of all those candidate histories that 
satisfy all the constraints. 

In practice, this generate-and-prune paradigm is applied as follows: the gen- 
erative portion straightforwardly defines a set of histories, encompassing all the 
desired ones; the constraints separately specify characteristics and requirements 
not necessarily ensured by the generative portion. The resulting denotation 
consists of precisely those generated histories that satisfy all the constraints. 
This style is not new to specification; Darlington, in his transformational deri- 
vation of sorting algorithms [5], begins with a specification of .sorting that 
generates all permutations of the input list, and thereafter filters to retain only 
those permutations that are ordered. Where Gist makes a major divergence from 
other specification languages is in incorporating this paradigm as fundamental 
to determining denotation. Further, because Gist denotations are sets of histories, 
constraints may refer to information spread through a history, making easy the 
definition of constraints that refer to activities taking place over time (for 
example, that the salary of an employee must be monotonic and increasing; that, 
having touched a chesspiece, a player must thereafter move that piece; that 
messages must be received in the order in which they were sent). 

In a specification of the composite system behavior, both the generative portion 
and the constraints may be defined in terms of information gathered from 

‘Gist thus has merging semantics for parallelism, allowing a single transition to he composed of 
several deltas. This permits the natural modeling of simultaneous activity, akin to “atomic transitions” 
in databases. 
s If necessary, introduce an initial empty state and appropriate transitions to lead to each of the 
intended starting states. 
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throughout the specified system. In other words, system decomposition in no 
way limits expression of system behavior. As we shall see, in modeling the stages 
that occur in developments from closed- to open-system specifications, it is 
important to make generation and pruning sensitive to the decomposition. 

3.2.1 Generation of Candidate Histories. The generative portion of a Gist 
specification is built from primitive statements that cause state changes, com- 
bined using conventional control constructs to provide the following: 

sequentiality 
conditionality 

iteration 

choice 

parallelism 

procedural abstraction 

data-driven invocation 
(demons) 

stop the elevator; open the elevator doors; 
if there is a passenger on board then . . . 
for all floors at which there are waiting passengers 
do . . . 
choose open the elevator doors or move on to the next 
floor 
open the elevator doors and open the elevator shaft 
doors 
call SEND-ELEVATOR-TO-FLOOR[elevator2, 
floor51 where SEND-ELEVATOR-TO-FLOOR[e of 
type elevator, f of type floor] = . . . 

whenever the elevator arrives at a floor do . . . 

In defining a closed-system specification, the language of predicates and 
expressions used by these control constructs has access to system-wide infor- 
mation (e.g., the location of elevators, the status of their doors, or the destinations 
of passengers). Also, the language has access to previous and future states within 
the entire sequence of states that comprise a history (e.g., the last floor this 
elevator stopped at, the next floor this elevator will stop at). 

These liberal access abilities lend Gist considerable power of expression not 
found in other specification languages. 

3.2.2 Constraints and Pruning. For convenience, a constraint is, usually ex- 
pressed as a predicate to be evaluated inside a state, in which case it will be true 
of a history if and only if that predicate evaluates to true in every state in the 
history. For example, the constraint that every passenger must have exactly one 
destination floor will be true of a history if and only if in every state of that 
history, every passenger in that state has exactly one destination floor. The 
predicate defining the constraint may of course be expressed in terms of infor- 
mation drawn from throughout the system, and may refer to previous and future 
states of the history. 

In what follows, it will not matter how a constraint is defined, only whether or 
not a history satisfies a constraint. Hence a constraint will be represented as a 
predicate on histories: 

constraint: history + boolean 

If c is a constraint and h is a history, write c(h) to denote the constraint applied 
to the history, that is, c(h) will be true if the history satisfies the constraint, 
false otherwise. 
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987. 
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Pruning a behavior with a set of constraints retains those and only those 
histories of the behavior that satisfy all the constraints. This is formalized in 
function Prune, which, given a behavior b and a set of constraints SC, returns the 
pruned behavior. 

Definition. Prune 

Prune: behavior X set of constraints + behavior 

Prune(b, SC) = (h E b 1 (VC E SC 1 c(h))] 

3.2.3 Some Properties of Pruning Constraints. The following properties follow 
immediately from the definition of constraints and pruning; we shall see later 
that, as we extend their definitions to take into account the decomposition into 
components, not all of these properties are preserved. 

Uniqueness. For any behavior b and set of constraints SC, Prune(b, SC) uniquely 
defines a behavior. 

Thus a specification denotes a uniquely defined behavior. Note that since a 
behavior is a set of histories, nondeterminism is modeled as multiple histories 
within that set. An implementation of a specification will be correct with respect 
to behavior, provided the implementation’s behavior is a (nonempty) subset of 
the specification’s behavior. 

Monotonic. For any behavior b, set of constraints SC, and constraint c, 

Prune(b, (c) U SC) G Prune(b, SC). 

Thus the addition of a constraint may cause more histories to be pruned out, but 
will never cause more histories to be retained. 

Commutative. For any behavior b and sets of constraints scl and sc2, 

Prune(Prune(b, xl), x2) = Prune(b, scl U ~2) = Prune(Prune(b, sc2), xl). 

Thus a calculation of pruning may be done incrementally, and the order in which 
the constraints are considered is irrelevant. In fact, 

Prune(Prune(b, scl U ~2) = Prune(b, scl) fl Prune(b, ~2). 

Thus pruning may be done independently for any factoring of the constraints 
and the results combined to give the same net result. 

Conjunctive. For any behavior b, constraints cl and ~2, and set of con- 
straints SC, 

Prune(b, (cl] U (~2) U SC) = Prune(b, {c3j U SC) where c3(h) = cl(h) A c2(h). 

Thus constraints may be conjoined, or conjunctive constraints decomposed, 
without changing the behavior. 

3.3 Defining the Decomposition of a Closed-System Specification 

3.3.1 Components and Agents. Composite systems are made up of components. 
Each autonomous process in the domain being specified will typically be a 
separate component (e.g., in a domain of elevators serving passengers in a 

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987. 



206 l Martin S. Feather 

multistory building, each passenger, the elevator controller, and the elevator 
mechanism itself might be components). 

Gist has a construct called an agent, which is used to model components. 
Agents partition the generative portion of a Gist specification. Thus every 
primitive statement (one that contributes a delta or deltas to a transition) is 
within the scope of some agent. When such a statement is executed, its containing 
agent is said to have “done” the deltas contributed by that statement. For 
example, if a statement within the passenger agent changes the passenger’s 
location, that delta is said to have been done by that passenger agent. The 
information of which agent has done a delta is recorded within the denotation 
by labelling each delta with the agent that did it. To permit this record necessi- 
tates extending the definition of the denotation slightly, modifying a transition 
to be 

A transition is a set of ordered pairs, each of which is an agent X delta. 
An agent is primitive; there is an equality relation over agents. 

The augmented denotation distinguishes between the same delta done by 
different agents within a single transition (whereas the unaugmented denotation 
would not). The language of predicates and expressions over histories (which is 
used in defining both the generation of candidate histories and constraints to be 
applied in pruning) may use this extra knowledge. 

3.3.2 Agent Interfaces. I now propose an extension to Gist’s agents, to model 
more of the aspects of components. The objective is to represent the restrictions 
on interactions between components. To do this requires the notion of informa- 
tion “belonging to” a component. 

In addition to containing control statements, an agent may also contain 
declarative statements of the data model’s objects and associations. Instances of 
such objects and associations are then said to “belong to” that agent. 

An agent’s implementation must comply with the restrictions on the informa- 
tion it accesses and affects. The default restrictions are that an agent may access 
and affect only the information that “belongs to” it. For example, if a passenger’s 
destination is information belonging to the passenger agent, then the default 
restriction is that only the passenger agent may access or affect that information. 
These default restrictions may be overridden in agents’ interfaces. For example, 
suppose an elevator’s location “belongs to” the elevator mechanism agent. To 
model the fact that a passenger at a floor can see an open-doored elevator at that 
floor (and hence knows its location), the interface of the elevator mechanism 
grants the passenger agent the right to access that information under those 
circumstances. The precise means of expressing interfaces is still in tentative 
form; further experience is required to judge what will be the most generally 
useful syntactic notations, defaults, and so on. 

Compliance with a restriction on affecting information means that when a 
delta that changes the information is done by an agent, that agent must be 
allowed to affect that information. For example, if the elevator mechanism were 
restricted from affecting a passenger’s destination, it would not be permitted to 
change that value (otherwise it would be trivial to get a passenger to his/her 
destination: simply change his/her destination to be his/her current location!). 
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987. 



Language Support for Composite Systems l 207 

Compliance with a restriction on accessing information is not usually deter- 
minable until quite late in the development from specification to implementation. 
Typically, Gist specifications define their generative portions and constraints in 
terms of arbitrary access to information, without such access being recorded in 
the denotation. For example, the specification of the constraint that limits the 
movement of an elevator to the direction of its passengers’ destinations might be 
expressed in terms of passengers’ presence inside elevators, and passengers’ 
destinations; but all that appears in the denotation is the movement of the 
elevator, without any representation of access to information about passengers. 
Ultimately, development will lead to an algorithm for controlling movement, at 
which point that algorithm’s accesses can be made into explicit activities ap- 
pearing in the denotation (e.g., sensing when buttons have been pushed-by 
passengers requesting transportation to particular floors). Only then will it be 
possible to check for compliance with access restrictions. Obviously, consideration 
of these restrictions may have an early influence on the implementation process. 

4. CHOICE AND RESPONSIBILITY 

The previous section outlined those features of Gist that are supportive of the 
closed-system style of specification. Now I show how Gist may be extended to 
formalize the intuitive notions of “choice” and “responsibility,” notions which 
are useful in both specification and development. I begin with the trivial but 
illustrative example below. 

4.1 Example Scenario-the Business Lunch 

Consider a scenario of a business lunch with two participants, the host and the 
visitor. They eat at a restaurant with a very limited menu, offering only two 
choices: an expensive steak special, or a more moderate chef’s salad. The host’s 
company has an austerity measure to discourage overly large expense claims, and 
will only recompense the expense of a lunch if the total cost does not exceed 
some preset limit (otherwise no compensation whatsoever is given). As it happens, 
the cost of two steak specials exceeds this limit, whereas the cost of two chef’s 
salads, or one chef’s salad and one steak special, falls below this limit. Hence the 
two diners, if they wish to be compensated for their meal, must not both order 
steak. Suppose that the host orders first. This scenario is expressed in terms of 
behavior, histories, transitions, and so on, as follows. 

The unpruned system behavior is the set of four histories, (hi, hz, h3, h4 ) where 

hi = (H X salad); (V x salad] 

hp = (H x salad); (V x steak) 

h3 = (H x steak); (V x salad) 
L = (H x steak); {V x steak} 

The host orders salad, 
then the visitor orders salad. 

The host orders salad, 
then the visitor orders steak, 

and so on. 

Notation. “H” (host) and “V” (visitor) are the agents in this system. 
“H X salad” is the delta of ordering a salad, done by agent H 

(the host). 
“{H x salad)” is the transition consisting of a single delta. 
“;” separates transitions in a history. 
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The limit on their expenditure may be expressed as a constraint which holds 
for histories in which they do not both order steak. Calling this constraint 
“NotBothSteak”, we have 

NotBothSteak(hi) = true for i = 1, 2, 3 
= false for i = 4 

Then 

Prune((hl, hz, hS, b), (NotBothSteak]) = (hl, hz, h3). 

Intuitively, this system’s behavior may be viewed as a sequence of choices, 
H’s choice of lunch followed by V’s choice of lunch. This may be seen by drawing 
the set of histories as a tree whose root is the common starting point of each 
history, and whose branches are the transitions; see Figure 1. Each path through 
the tree from root (the common starting point) to leaf (an end-point) is a history. 
Histories with common initial sequences of transitions share the same sequence 
of branches from the top of the tree, so that branch points within the tree occur 
when and only when histories diverge. 

Viewed in this manner, it is clear that pruning leaves H’s choice unrestricted, 
but constrains V’s choice if H has chosen steak. Is this fair? To answer requires 
a notion of responsibility. Intuitively, those and only those agents responsible for 
a constraint should limit their choices to ensure satisfaction of that constraint. 
Thus, if V is responsible for the NotBothSteak constraint, then this is fair, 
because only V’s choices are constrained. Conversely, if H instead of V is 
responsible, this is not fair. Instead, H’s choice should be constrained to salad, 
leaving V’s choice unconstrained: see Figure 2. 

4.2 Formalizing Choice and Responsibility 

The original simple form of pruning simply discards those candidate histories 
that fail any of the constraints, and so is neutral with respect to agents. This 
neutrality is appropriate when specifying the ideal behavior of a composite 
system. As such a system is decomposed into components, the necessity to 
decompose ideal system behavior into a composition of individual component 
behaviors introduces the need for discrimination among agents, and the notions 
of choice and responsibility play an important role in these descriptions. 

The simple business lunch example illustrates the overall approach to formal- 
izing the notions of choice and responsibility. The behavior, a set of histories, 
is viewed as a tree of histories, in which diverging branches in the tree corre- 
spond to diverging histories. At a point in the tree where branches diverge, an 
agent has the choice of the deltas it contributes to the transitions starting each 
of those branches. Pruning discards histories in order to satisfy the constraints; 
viewed on the tree, pruning lops off branches, and hence potentially limits 
agents’ choices. Pruning must ensure that all the constraints are satisfied, and 
must do so by constraining the choices of only those agents responsible for the 
constraints. 

4.2.1 Combining the Set of Histories into a Tree. A set of histories is combined 
into a rooted, unordered tree by maximally sharing common initial sequences of 
transitions. Thus each path through the tree from the root to a leaf corresponds 
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unpruned pruned 

“xm,:a . . . . . . . Ttyieek 

hc hz ha h h hz h, (hr) 
NotEothSteak J 4 J x JJ J 

Fig. 1. The diners’ behavior tree-unpruned and pruned. 

h hz h3 hr h hz (ha) h3 

NotRothStcak d J J x .I J 

Fig. 2. The diners’ behavior tree-pruned when H is responsible. 

to one of the histories in the original set. This tree representation is more 
intuitive for understanding the notions of choice and responsibility. 

The tree representation is interchangeable with the set representation, pro- 
vided that no history in the behavior is an initial sequence of any other history. 
This restricts the behaviors that can be represented. Fortunately, the restriction 
is desirable, because if a behavior includes two histories, one of which is an initial 
sequence of the other, and the system performs the sequence of transitions that 
comprise the shorter history, then it would be impossible to tell whether the 
system had actually completed the shorter history or was at any moment about 
to continue with the longer one. 

Our tree representation of behavior has much in common with Milner’s CCS 
(Calculus of Communicating Systems) trees [8,13]. In CCS, a program’s behavior 
is determined by how it communicates with an observer (its environment); rooted, 
unordered trees with labeled arcs represent behaviors. CCS formalisms are suited 
to representing and reasoning about behaviors of what I am calling components 
and combinations of components. 

4.2.2 Choice. An agent’s choices at a node in a behavior tree are the different 
sets of deltas it contributes to the transitions emerging from that node. See, for 
example, Figure 3, the diners’ pruned behavior tree. 

Formally, define a function ChoicesAtNode which, given a node n in behavior 
tree b and agent a, returns that agent’s choices (a set of sets of deltas) at that 
node. 
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H’s choices here are {{salad}.{steak)} 

;” V’s choices here are (0) 

i 

H’s choices here are (0) 
V’s choices here are ((salad).{steak}} 

hr hz 

H’s choices here are {{}} 

V’s choices here are {{salad}} 

Fig. 3. Choices at nodes in the diners’ pruned behavior tree. 

Definition. ChoicesAtNode 

ChoicesAtNode: node x behavior x agent -+ set of sets of deltas 

ChoicesAtNode(n, b, a) = ((6 1 (a x 6) E t) 1 t E TransitionsFromNode(n, b)] 

TransitionsFromNode(n, b) = the set of transitions that emerge from node 
n in behavior tree b (the empty set if n is not 
a node of b) 

Pruning discards histories from the set of candidate histories. Viewed on the 
equivalent tree representation, pruning “lops off” branches of the tree. When a 
branch is lopped off, the entire subtree it supported is discarded; see Figure 4. 

Define function LoppedAtNode which, given node n in behavior tree b and 
pruned behavior tree pb, returns the set of transitions beginning those branches 
lopped from node n in that pruning. 

Definition. LoppedAtNode 

LoppedAtNode: node x behavior X behavior + set of transitions 

LoppedAtNode(n, b, pb) = 
TransitionsFromNode(n, b) 
- TransitionsFromNode(n, pb) 

At nodes from which branches have been lopped, agents may have fewer 
choices in the pruned tree than they had in the unpruned tree (i.e., their choices 
may be limited by the pruning; see Figure 5). 

Formally, define LimitedByLopping to compute those agents whose choices 
are limited in this manner when the branch beginning with transition t is lopped 
off from node n as part of pruning to behavior tree pb (i.e., those agents whose 
choice in the lopped transition is not among their choices remaining in the 
pruned tree pb ) . 

Definition. LimitedESyLopping 

LimitedESyLopping: transition X node X behavior + set of agents 

LimitedByLopping(t, n, pb) = (a 1 (6 1 (a x 6) E t) B ChoicesAtNode(n, pb, a)) 

4.23 Responsibility. The agents responsible for a constraint limit their choices 
so as to ensure the satisfaction of the constraint without making it necessary for 
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with transition t2 leads to the 
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discarding of this entire subtree: 

Fig. 4. Pruning lops off branches and their subtrees. 

H’s remaining choices are {{salad}} 

..:““‘v’s remaining choices are {a} 

* 

0. 

H x salad 
l . 

l . . ~ ,..._..... “.’ In this lopped transition, 

*. H’s choice was {steak}, 
0. 

** Vs choice was 0 
: *. 

V x salad 

x 

V x steak : :.. 
: . . 

: . . 
. . 

h h2 (h3 (h3 

Since H’s choice in the lopped transition is not among H’schoices remaining 

in the pruned tree, this lopping limits H. 
Conversely, since V’s choice in the lopped transition is among V’s choices 

remaining in the pruned tree, this lopping does not limit V. 

Fig. 5. Limiting of agents’ choices owing to lopping of branches during pruning. 

other, nonresponsible, agents to limit their choices. Thus, if pruning which lops 
off a branch at a node has the effect of limiting the choices of some agents, those 
agents must be responsible for lopping off that branch. The following definitions 
determine which are the responsible agents. 

Responsibility for a constraint is assigned to a set of agents. This is represented 
by pairing the set of responsible agents with the constraint, to form an assigned 
COTlStFUint: 

assigned constraint = set of agents x constraint 

When a history fails a constraint to which a set of agents is assigned, that set 
of agents is responsible for pruning out the history. When a history fails several 
such constraints, the set of responsible agents is the union of the sets of agents 
responsible for each of the failed histories. This is expressed in function 
ResponsibleForHistory which, given a history and a set of assigned constraints, 
returns the agents responsible for pruning out that history. 
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Definition. ResponsibleForHistory 

ResponsibleForHistory: history x set of assigned constraints + set of agents 

ResponsibleForHistoryy(h, sac) = U sa 
(so~c)Esac 1 -c(h) 

At a node where pruning lops off a branch, the set of agents responsible for 
lopping that branch is the union of the agents responsible for the histories 
comprising that lopped-off branch. If a branch in a tree is identified by the 
transition beginning that branch, then the histories comprising that branch 
are those and only those containing that transition. In the definition that 
follows, “h contains t” means history h contains transition t. Formally, define 
ResponsibleForLopping(t, b, sac) to return the set of agents responsible for 
lopping off the branch beginning with transition t from behavior tree b when 
pruning for set of assigned constraints sac thus: 

Definition. ResponsibleForLopping 

ResponsibleForLopping: transition x behavior 
x set of assigned constraints + set of agents 

ResponsibleForLopping(t, b, sac) = U ResponsibleForHistory(h, sac) 
hEbJ hcontainst 

These simple definitions result in a rather crude assignment of responsibility 
when a history fails several constraints at once, or when several histories pruned 
by the lopping of the same branch fail several constraints (in either case, the sets 
of agents responsible for the failed constraints are simply unioned together to 
determine the responsible agents for pruning). For example, as a consequence, it 
is impossible to differentiate between two agents being separately responsible for 
the same constraint and those two agents being jointly responsible for that 
constraint. Whether a more sophisticated definition is required remains to be 
seen. For the time being, the simple version set forth above will suffice. 

4.2.4 Pruning for Assigned Constraints. Define predicate OKPruning(b, pb, 
sac) to be true if, at every node retained in the pruned behavior tree pb obtained 
by pruning b with set of assigned constraints sac, the agents whose choices are 
limited by lopping a branch from that node are a subset of the agents responsible 
for lopping that branch. 

Definition. OKPruning 

OKPruning: behavior x behavior X set of assigned constraints + boolean 

OKPruning(b, pb, sac) = Vn E pb 1 Vt E LoppedAtNode(n, b, pb) 1 
LimitedByLopping(t, n, pb) C ResponsibleForLopping(t, b, sac) 

Implicit within this definition is the assumption that nodes not retained within 
the pruned behavior tree need not be considered. Intuitively, if a choice point 
(node) is never reached, it does not matter what choices used to be there (i.e., 
one way to avoid making nonresponsible agents limit their choices is to not let 
them get to the state where they would choose). 

Also implicit in this definition is the decision to consider the validity of lopping 
at a node on a branch-by-branch basis. Alternative definitions, which determine 
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987. 



Language Support for Composite Systems l 213 

the validity of lopping at a node by simultaneously considering all the lopped-off 
branches at once, have to be constructed with great care to retain the desirable 
closure property (that the union of two prunings OK with respect to choice and 
responsibility is also OK). Again, the simple definition set forth above is chosen 
here. 

Pruning is achieved by discarding histories from the set of candidate histories; 
the predicate OKPruning defines when this is done in compliance with the 
notions of “responsibility” and “limiting of choice.” There remains the original 
purpose of pruning, namely the discarding of every history that fails any con- 
straint. These conditions are embodied in function OKPrunings(b, sac), which 
for behavior b and set of assigned constraints sac returns the set of all acceptably 
pruned behaviors. 

Definition. OKPrunings 

OKPrunings: behavior x set of assigned constraints + set of behaviors 

OKPrunings(b, sac) = (pb 1 pb G b A OKPruning(b, pb, sac) 
A (Vh E pb, (sa x c) E sac 1 c(h))) 

OKPrunings returns a set of behaviors, because for a given behavior and set of 
assigned constraints there may be several prunings that satisfy the requirements. 
The empty set of histories is always one of these behaviors. Also, OKPrunings is 
closed under union,4 that is, 

Vb, sac, pbl E OKPrunings(b, sac), 
pb2 E OKPrunings(b, sac) 1 (pbl U pb2) E OKPrunings(b, sac) 

This implies that a behavior never has two “incompatible” prunings, neither of 
which can be extended to include the other. Also, for all finite sets of histories, 
this guarantees that OKPrunings is uniquely defined (certain pathological infinite 
sets of histories do not have a uniquely defined largest pruning). 

These properties imply that, for a behavior that is a finite set of histories, 
applying OKPrunings yields a lattice of behaviors, where the links of the lattice 
correspond to subset. The (uniquely defined) largest behavior is the desired result 
of pruning, since it discards as few of the candidate histories as necessary. 
PruneA is defined to return this result, given behavior b and set of assigned 
constraints sac. 

Definition. PruneA 

PruneA: behavior X set of assigned constraints + behavior 

PruneA(b, sac) = Largest(OKPrunings(b, sac)) 
= U bs 

bsEOKPrunings(b,sac) 

4.3 Examples and Properties of Pruning Assigned Constraints 

Pruning of unassigned constraints is simple in that the decision to retain or 
discard a candidate history is not dependent upon the presence or absence of 
other histories in the set of candidate histories. In constrast, pruning of assigned 

’ See the appendix for a sketch of a proof of this. 

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987. 



214 l Martin S. Feather 

constraints is dependent upon the whole set of candidate histories, since it is 
that set which defines agents’ choices. As a result, only some of the properties of 
unassigned pruning mentioned in Section 3.2.3 remain properties of assigned 
pruning, as is shown next. 

Returning to the scenario of a business lunch. 

The unpruned behavior is 

(h,, hz, h8, b) where h1 = (H x salad]; (V x salad) 
hp = {H x salad]; (V x steak] 
h3 = {H x steak); {V x salad] 
hb = (H x steak]; {V x steak) 

NotBothSteak(hi) = true for i = 1, 2, 3 
= false for i = 4 

Pruning of assigned constraints gives 

OKPrunings( (hi, hz, ha, L ), ((H, V) X NotBothSteak]) 
= i&l, hz, h31, h, h2L l II 

(see Figure 6), hence 

PruneA((hi, h2, hs, Ll, ((H, V) x NotBothSteak]) = {hi, hz, h3) 

Extending the example, introduce the additional constraint that the visitor is a 
vegetarian (call this constraint “VegetarianV”): 

VegetarianV(hJ = true for i = 1, 3 
= false for i = 2, 4 

Then pruning of unassigned constraints gives 

See Figure 7. 

Prune((hi, hp, hB, h4), (NotBothSteak]) = (hi, h2, h3] 
Prune((hi, ha, ha, h4), (VegetarianV)) = (hi, h3] 
Prune((hi, ha, h3, h.,), (NotBothSteak, VegetarianV]) = (hi, h3) 

4.3.1 Properties of Pruning Assigned Constraints. Uniqueness. Provided that 
the unpruned behavior is a finite set of histories, pruning of assigned constraints 
is guaranteed to uniquely define a behavior, that is, retains the important property 
of uniqueness of the denotation of specification. 

Relationship to unassigned pruning. Note that, in the above example, the result 
of pruning with the NotBothSteak constraint assigned to all the agents in the 
system is identical to the result of pruning when that constraint was unassigned. 
This is true in general, that is, for any behavior b and set of constraints SC, 

Prune&, SC) = PruneA(b, sac) 
where sac = ((sa X c) 1 c E SC) 

where sa = (a 1 36, t, h 1 (a X 6) E t A t E h A h E b) 

In the above, sa is the set of all agents contributing deltas to the system, 
that is, all those agents a such that, for some delta 6, the pair (a X 6) is in 
a transition t contained in some history h of behavior b. 
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NotBothSteak JJ Jx 

Lopping limits V’s choice; Lopping limits H’s choice; No histories remain, so no 

{H,V} responsible { H,V} responsible choices to consider 

Fig. 6. OKPrunings of the NotBothSteak constraint assigned to both diners. 

x steak 

NotBothSteak JJ Jx 

VegetarianV J X J x 

Fig. 7. The business lunch: unpruned behavior and constraints. 

It follows immediately from the definition of PruneA (pruning of assigned 
constraints) that pruning a behavior with a set of assigned constraints is always 
a subset of pruning that behavior with those constraints unassigned. In other 
words, for any behavior b and set of assigned constraints sac, 

PruneA(b, sac) G Prune(b, SC) where SC = (c 1 (sa X c) E sac) 

For example, 

PruneA((hl, hZ, ha, L], ((HI x NotBothSteakJ) = (h,, h2), and 
Prune({hl, hz, h3, L), {NotBothSteak)) = (hl, hz, h3) 
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At worst, the result of pruning may be the empty set of histories. For example, 
H cannot alone take the responsibility for the VegetarianV constraint, since 
either of H’s choices leaves V free to choose between steak and salad, hence; 

PruneA((hi, hZ, hB, h4), ((Hj x VegetarianV)) = ( ) 

Conjunctive. As in the unassigned case, constraints may be conjoined, or 
conjunctive constraints decomposed, without changing the effects of pruning. 
Thus, for any behavior b, set of agents au, constraints cl, c2, and set of assigned 
constraints sac, 

PruneA(b, (so X cl] U (sa X c2) U sac) = Prune@, (sa X ~3) U sac) 
where(c1 A c2)(h) = cl(h) A c2(h) 

For example, 

PruneA((hl, hp, hs, b), ((V) x NotBothSteak, (V) X VegetarianV]) = (hi, hs] 

and 

PruneA((hi, hz, h8, Ll, ((VI x NotBothSteak&VegetarianV]) = (hi, h3) 

where NotBothSteak&VegetarianV(h) = NotBothSteak(h) A VegetarianV(h) 

In addition, pruning with the same constraint separately assigned to several sets 
of agents is identical to pruning with that constraint assigned to the union of 
those agent sets. Thus, for any behavior b, sets of agents, sal, su2, constraint c, 
and set of assigned constraints sac: 

PruneA(b, (sul X cl U (su2 X c) U sac) = PruneA(b, ((sul U su2) X cl U sac). 

For example, 

PruneA((hl, hz, h3, b), ((H} x NotBothSteak, (VI X NotBothSteakj) 
= (hl, hz, Ll 

PruneA((hl, b2, hS, b,), ((H, V] X NotBothSteak]) = (hl, h2, h3) 

Not necessarily monotonic. The behavior that results from pruning with a set 
of assigned constraints is not necessarily a subset of the behavior that results 
from pruning with a superset of those assigned constraints, that is, addition of 
another assigned constraint may cause some previously retained histories to be 
pruned, and/or some previously pruned histories to be retained. For example, 

PruneA((hi, hz, h3, h4], ((H) x NotBothSteak)) = (hi, h2) 

Because H alone is responsible for pruning out h4, it is H’s choice that has to be 
limited, thus necessitating pruning out h8 also. 

PruneA((hi, ha, ha, h4), ((H) x NotBothSteak, (V) X VegetarianV)) = (hi, h3) 

Adding the VegetarianV constraint assigned to V extends the set of agents 
responsible for pruning h4 (which fails both constraints), hence V’s choice may 
now be limited to effect pruning of L. This allows retention of hs (however, h2 
is now pruned out because it fails the introduced constraint). 
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This example shows that, when pruning simultaneously with several assigned 
constraints, these constraints do interact with one another. The very simple 
nature of pruning of unassigned constraints obscured any such interaction. 

Not necessarily commutatiue. Multistage pruning of assigned constraints (in 
which the pruned behavior of one stage of pruning is used as the unpruned 
behavior for the next stage) is not necessarily equivalent to single-stage pruning, 
and the order in which the pruning is done may make a difference. For example, 

PruneA(b, ((V) X Vegetarianv]) = (h,) 
where b = PruneA((hi, ha, h3, b], ((Hj X NotBothSteak)) 

Pruning first with ((HJ x NotBothSteakJ forces H’s choice to be limited to salad, 
(hi, hzJ, whereupon pruning with ((VI X VegetarianV] removes ha. 

PruneA(b, ({HI X NotBothSteak)) = (hi, h3) 
where b = PruneA((hi, hz, h3, L), ((HI X VegetarianVJ) 

Conversely, pruning first with ((V) X VegetarianV] forces V’s choice to be limited 
to salad, (hi, hB 1, whereupon pruning with {(HI X NotBothSteak) need remove 
nothing further; see Figure 8. 

This phenomenon may be used to advantage, as is discussed in the following 
section. Successive stages in multistage pruning are monotonic, since the output 
of a stage of pruning is necessarily equal to or a subset of its input. 

4.4 Reliance Among Constraints 

A set of constraints may rely upon the effects of another set of constraints as 
follows: if we begin with a behavior (Bl), prune first with a set (Sl) of constraints 
to get another behavior (B2), and prune B2 with another set (S2) of constraints, 
then S2 relies upon the effects of Sl’s pruning because it has to deal only with 
the histories in B2, not with whatever additional histories were present in Bl 
and removed by the first pruning. 

This phenomenon can be demonstrated in the business lunch scenario; see 
Figure 8. 

Whenpruningwith (HJ X NotBothSteak followspruningwith (V) X VegetarianV, 
H can rely upon V’s pruning to have removed the history in which V chose steak. 
Hence H need prune no further, in particular, can retain choice of steak. 
Conversely, if the prunings are done in the other order, H cannot rely upon V’s 
pruning, and so must prune out choice of steak. In this case, although V can rely 
upon H’s pruning, there is no advantage to be gained. 

In practice, it is quite useful to simplify the expression of constraints. For 
example, the specifier of an elevator controller may rely on passengers being 
unable to enter an elevator whose doors remain closed (something that might 
well be expressed by means of a constraint) in defining the constraint that 
prohibits passengers from ever moving further from their destinations. The latter 
may be expressed quite simply, without the need to be concerned with impossible 
transportation histories in which passengers enter closed elevators. 

Note that when dealing purely with unassigned constraints, this phenomenon 
does not arise, because such constraints are not sensitive to choices. 
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Fig. 8. Alternative multistage prunings in the business lunch scenario. 

5. EXAMPLE-ELEVATOR SCENARIO 

The scenario of controlling elevators in a multistory building is used to illustrate 
composite system specification and development from closed to open style, which 
is a necessary precursor to implementation. 

5.1 Starting Point 

The objective is to derive an open-system specification of the mechanism that 
controls elevators and interacts with passengers to transport them to their 
destination floors (henceforth this mechanism is referred to as the controller). 
The starting point is a model of the composite system of which the controller is 
a part; this takes the form of a closed-system specification. Since in principle the 
system encompasses the physical universe, what is actually modeled is a man- 
ageable abstraction that retains only relevant details. 

5.1.1 System and Agents. The multistory building is modeled very simply as a 
sequence of floors; elevators are modeled as objects with a location (a floor) and 
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doors (either open or closed); passengers are modeled as objects with a destination 
(a floor) and a location (a floor or elevator). Passengers are modeled only during 
their interaction with the elevators, so the appearance of a passenger who wishes 
to use the elevators to get from one floor to another is modeled by the creation 
of a new passenger object with appropriate location and destination. This simple 
model is divided into the following agents: 

-Each passenger is a separate agent (in contrast to, say, using a single agent for 
all passengers), so as to be able to consider what an individual passenger must 
know and do. 

-The controller is modeled as a single agent (which abstracts from details of 
how an actual control mechanism interacts with elevator hardware-motors, 
sensors, switches, etc.). 

-The appearance of passengers is an agent that creates passengers (objects that 
are also agents). 

The somewhat counterintuitive introduction of an “appearance” agent derives 
from the need to separate the activity of passengers who are interacting with the 
elevators and the activity of passengers outside of such interaction (the latter 
has been abstracted to bare essentials, i.e., that new passengers appear at floors 
with other floors as their destinations). 

5.1.2 System Decomposition. The decomposition of the elevator system into 
agents determines the information belonging to each agent, the activities done 
by each agent, and the restrictions on interactions among agents. For example, 
a passenger’s location and destination are information belonging to that passen- 
ger agent. When a passenger enters an elevator, that activity is done by that 
passenger agent. 

The extent to which passenger agents may interact with one another and with 
the controller is determined by their interfaces. By default, no interaction is 
allowed. Clearly this will not be acceptable. For the purposes of this presentation, 
consideration of what are acceptable interfaces is delayed until after the assigned 
constraints have been divided among the individual agents. 

5.1.3 System Behavior. The desired system behavior is the rapid transporta- 
tion of passengers to their destinations. This is specified by generating the set of 
all possible transportation histories, and pruning to just those histories in which 
passengers are transported rapidly to their destination floors. 

Possible transportation histories are generated by combining the possible 
activities of the various agents in the specification (the controller causing 
elevators to move and open/close their doors, the appearance agent introducing 
new passengers at floors with other floors as their destinations, and individual 
passengers entering/exiting elevators). Constraints may be used in defining 
possible transportation histories (e.g., to express that a passenger at a floor can 
only enter an elevator whose doors are open at that floor). 

Pruning to only rapid transportation histories is defined by constraints (e.g., 
to express that a passenger must never move further from his/her destination 
floor). These constraints are assigned as the joint responsibility of the controller 
and the passengers, but not of the appearance agent (for otherwise the behavior 
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could be trivially achieved by having passengers appear with their destinations 
always equal to their locations). If there are properties of passenger appearance 
that it would be advantageous to know (e.g., the majority of passenger travel is 
to or from the ground floor), they would be expressed as constraints on the 
appearance agent. 

It considerably simplifies the definition of the constraints for rapid transpor- 
tation if they have only to prune from the set of possible transportation histories. 
That is, rapid transportation constraints rely upon the constraints defining 
possible transportation histories to have already been applied. This is achieved 
by pruning in two main stages, as shown in Figure 9. This is an example of the 
use of multistage pruning referred to in Section 4.4. 

5.2 Development to Divide Responsibility Among Individual Agents 

The development goal is to decompose all constraints with responsibilities 
spanning multiple agents into constraints with responsibilities separately as- 
signed to the controller and individual passengers. 

Decomposition of a constraint is achieved by choosing an implication of the 
constraint to make into a separate, explicit constraint, and thereafter simplifying 
the original constraint. Judicious choice of the implication will give a constraint 
whose responsibility can be simplified to an individual agent. This process is 
continued until all the constraints are assigned as the responsibility of individual 
agents. 

The development that follows has been done by hand only, that is, has not 
been carried out in any formal system that guarantees the correctness of the 
steps that are intended to preserve behavior. All the stages of the development 
are expressible in the extended Gist that has been outlined. The stages are as 
follows: 

(1) The initial constraints defining suitably rapid transportation are as follows: 

(a) NO FURTHER FROM DESTINATION. A passenger must never move fur- 
ther from his/her destination floor. 

(b) NO DELAY TO RIDERS. Passengers riding inside elevators must not be 
unnecessarily delayed. “Unnecessary delay” can be defined on a history 
as a contiguous sequence of states during which a passenger was inside 
the elevator while the elevator remained inactive (did not move, open 
or close its doors, or take on or let off passengers). 

These constraints are initially assigned as the joint responsibility of the 
controller and all passengers. 

(2) Decompose NO FURTHER FROM DESTINATION by: 

(a) Defining the (single-valued) Passenger Direction (P-D) of a passenger 
to be the direction (up or down) in which that passenger must go to 
reach his/her destination floor. (More precisely, the P-D of a passenger 
will have no value when the passenger is at his/her destination floor, 
so it is either single-valued or has no value.) This definitional step names 
a piece of information in preparation for future steps. 
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Generative portion of 
specification 1st stage of pruning 

I set of all possible 
transportation histories 
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Fig. 9. Main stages of pruning in the initial elevator specification. 

(b) Choosing the implication of NO FURTHER FROM DESTINATION, that all 
riders in a moving elevator have the same P-D (or none at all), to 
become the explicit constraint RIDERS IN MOVING ELEVATOR COMPAT- 
IBLE. This is assigned as the responsibility of the controller and all 
passengers. 

(c) Taking advantage of the introduced constraint to simplify NO FURTHER 
FROM DESTINATION; its simplified form is that a moving elevator with 
a rider must be moving in that rider’s P-D direction, and is the 
responsibility of only the controller.’ The constraint is renamed accord- 
ingly to MOVE IN RIDER'S P-D. Thus the introduced constraint allowed 
NO FURTHER FROM DESTINATION to be simplified to a responsibility of 
the controller alone. 

Figure 10 illustrates the development up to and including step (2~). The double- 
bordered boxes show the constraints and their associated sets of responsible 
agents that are in effect following this stage of development, while the single- 
bordered boxes show the constraints that have been decomposed (at this stage 

‘This simplification is intended to leave unchanged the behavior denoted by the specification. NO 
FURTHER FROM DESTINATION is equivalent to the conjunction of RIDERS IN MOVING ELEVATOR 
COMPATIBLE and MOVE IN RIDER'S P-D; the questionable step is the assignment of the singleton set 
of only the controller as the set of agents responsible for this latter constraint. The danger in this is 
that lopping a transition in which an elevator with a rider moves the wrong way limits choices of not 
only the controller, but also of some passenger(s), and whereas previously the passengers shared 
responsibility, now it rests on the controller alone, thus not admitting the same pruning. To see that 
this does not arise, compare any transition in which the elevator moves the wrong way with the 
similar transition comprising all the same changes but for the elevator moving the right way. If 
moving the right way succeeds, then lopping the transition of moving the wrong way limits only the 
controller’s choice of which way to move the elevator (since the same choices of all the other agents 
are present in the retained transition). Conversely, if moving the right way fails, then it is intuitively 
clear that whatever constraints caused its failure must also apply when moving the wrong way, and 
hence if pruning of the right way transition is valid, then pruning of the wrong way transition must 
also be valid. 
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Fig. 10. Development up to and including step (24. 

there is only one such constraint). Stages of decomposition (steps (2b) and (2~)) 
are indicated as labelled arrows; the label “imply” on (2b) signifies that the 
constraint at the source of the arrow (NO FURTHER FROM DESTINATION) implies 
the constraint at the target, while the label “simplify” on (2~) indicates that the 
constraint at the source of its arrow is simplified into the constraint at its end 
by taking advantage of the other constraint pointed to by the lightly dotted line 
(RIDERS IN MOVING ELEVATOR COMPATIBLE). Using these same notationalcon- 
ventions, the entire development is shown later in Figure 11. 

(3) Decompose NO DELAYTO RIDERS by: 

(a) Choosing the implication that all riders in a moving elevator have the 
same P-D to become the explicit constraint RIDERS IN ELEVATOR 
COMPATIBLE. This is assigned as the responsibility of the controller and 
all passengers. 

(b) Introducing constraint EXIT WHEN AT DESTINATION, that a passenger 
in an elevator exits that elevator when and only when it is at his/her 
destination floor. This is assigned as the responsibility of the controller6 
and all passengers. This is not implied by the existing constraints, since 
it eliminates otherwise acceptable histories in which a passenger exits 
prior to reaching his/her destination.’ Hence this step modifies the 
specification, rather than simply transforming its form while leaving the 
denoted behavior unchanged. The motivation for this modification is to 
simplify the behavior of passengers riding elevators. This will make it 

’ The controller’s inclusion is necessary to have the controller open elevator doors. 
7 Under certain circumstances the eliminated transportation history may even have been preferred 
from a global viewpoint. For example, suppose the last remaining passenger inside an elevator exits 
prior to reaching his/her destination, thus freeing that elevator to reverse direction and to pick up a 
multitude of passengers wishing to go the opposite way (i.e., delaying the one passenger in order to 
better serve the many). Irrespective of the desirability or otherwise of such a history, it is clear that 
to coordinate the passengers and controller to achieve this would require more interagent communi- 
cation than is commonly found in real-world elevator systems. 
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easier t0 iSO.&? What FeSpOmibi& the COntFOlkF has fOF the NO DELAY 
TO RIDERS constraint. The preceding step (3a) made explicit the consist- 
ency condition on passengers within the same elevator; this modification 
makes explicit (and simplifies) the condition on passenger exit from 
elevators. 

(c) Simplifying NO DELAY TO RIDERS. To do this successfully requires the 
use of information and constraints that will be defined during de- 
composition of other constraints. This simplification step is delayed 
accordingly. 

(4) Decompose EXIT WHEN ATDESTINATION by: 

(a) Choosing the implication that an elevator at the destination floor of 
some rider in that elevator must open its doors to become the explicit 
constraint OPEN DOORS FOR EXITOR. This is initially assigned as the 
reponsibility of the controller alone. 

(b) Taking advantage of the introduced constraint to simplify the assign- 
ment of responsibility for EXIT WHEN AT DESTINATION from the con- 
troller and all passengers to only the passenger who is the exiting rider. 

(5) SiIUX RIDERS IN ELEVATOR COMPATIBLE iIIIpk3 RIDERS IN MOVING ELE- 
VATOR COMPATIBLE, the latter has been subsumed and so is discarded. 

(6) Associate with each elevator an Elevator Direction (E-D), which is non- 
deterministically varying, subject to the following constraints: 

-E-D is a direction (responsibility assigned to the controller); 
-E-D is single-valued (responsibility assigned to the controller); 
-MOVE IN E-D, the constraint that when an elevator moves, its E-D = 

the direction of movement (responsibility assigned to the controller); 
and 

-E-D = RIDER'S P-D, the constraint that when an elevator has a passenger 
inside, its E-D = that passenger’s P-D (responsibility assigned to the 
controller and all passengers). 

For every elevator, there is always some E-D value satisfying the above 
constraints,8 hence this definitional step makes no change to the behavior, 
other than adding some nondeterminism of varying E-D values when they 
are not uniquely determined. E-D will be useful in reexpressing some of the 
existing constraints and for communicating between the controller and the 
passengers. 

(‘7) Since both E-D = RIDER'S P-D and MOVE IN E-D imply MOVE IN RIDER'S 
P-D, the latter has been subsumed and so is discarded. 

(8) Since both E-D = RIDER'S P-D and the single-valuedness of E-D imply 
RIDERS IN ELEVATOR COMPATIBLE, the latter has been subsumed, and so is 
discarded. 

sOccupied elevators take as E-D value the P-D of their rider(s), which is unique because of RIDERS 
IN ELEVATOR COMPATIBLE; moving elevators take as E-D value their direction of movement; MOVE 
IN RIDER'S P-D ensures consistency for elevators that are simultaneously moving and occupied. 
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(9) Decompose E-D = RIDER'S P-D by the following: 

(a) Choosing the implication that an elevator’s E-D must remain constant 
while there is a passenger inside to become the explicit constraint E-D 
CONSTANT WHILE RIDDEN. This is assigned as the responsibility of the 
controller. 

(b) Introducingtheconstraint NO SIMULTANEOUSENTRYANDE-DCHANGE, 
that a passenger may not enter an elevator simultaneous with that 
elevator’s E-D value changing. This is assigned as the responsibility of 
the controller and all passengers. This eliminates some changing of E-D 
values, but leaves all other choices (of passenger entry, etc.) unaffected, 
hence makes no change to the behavior other than limiting some of the 
nondeterminism introduced in step (6). The motivation for this modifi- 
cation is to simplify the correlation between E-D and riding passenger’s 
P-Ds. The preceding step (9-a) made explicit the need to keep the E-D 
constant while an elevator is being ridden; this modification simplifies 
the situation in which a passenger boards an elevator, by removing the 
tricky case of the E-D changing in parallel with the passenger boarding. 

(c) Introducing the constraint DOORS CLOSED WHILE E-D CHANGES, that 
an elevator’s doors must be closed while its E-D value changes. This is 
assigned as the responsibility of the controller alone. This reduces some 
last minute changing of E-D values, but leaves all other choices (of door 
closing, etc) unaffected, hence makes no change to the behavior other 
than further limiting some of the nondeterminism introduced in step (6). 
The motivation is to simplify the conditions under which the controlZer 
may change E-D values so as to be able to isolate what responsibility a 
passenger boarding an elevator has for the NO SIMULTANEOUS ENTRY 
AND E-D CHANGE constraint. 

(d) Since DOORS CLOSED WHILE E-D CHANGES implies NO SIMULTANEOUS 
ENTRY & E-D CHANGE, the latter has been subsumed and so is discarded. 

(e) Taking advantage of the constraints introduced in the preceding steps 
to simplify E-D = RIDER'S P-D; its simplified form is that a passenger 
entering an elevator must have a P-D value equal to the elevator’s 
E-D value, and is the responsibility of the entering passenger only. 
The simplified constraint is renamed accordingly to ENTER ONLY IF 
E-D = P-D. 

(10) Last, return to the decomposition of NO DELAY TO RIDERS begun in step 
(3). So far, the introduced constraints isolated when a passenger may not 
enter an elevator; now a constraint is introduced to determine when a 
passenger must enter. Having done this, it will be possible to assign the 
remainder of the responsibility for the original constraint to the controller. 
This is done by the following: 

(a) Introducing a constraint IMMEDIATE ENTRY, that a waiting passenger 
does not pass up the opportunity to enter an appropriate elevator (i.e., 
an open-doored elevator at that passenger’s floor with E-D = the 
passenger’s P-D; if there are several such elevators, then any one of 
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them). This is assigned as the responsibility of the entering passenger 
only. This constraint is not redundant, because it eliminates otherwise 
acceptable passenger actions. Hence this step, l&e the introduction of 
EXIT WHEN AT DESTINATION (step (3-b)), is a modification to the denoted 
behavior, in this case one that simplifies passenger entry into elevators. 

(b) Taking advantage of the constraints introduced in step (3) and in the 
previous step to simplify NO DELAY TO RIDERS; its simplified form is 
that an occupied elevator must not stop at a floor unless it is the 
destination of one of the riders, or the location of a waiting passenger 
who will board (i.e., who has a P-D equal to the elevator’s E-D), and is 
the responsibility of the controller only. The simplified constraint is 
renamedaccordinglyto STOP ONLYTO ALLOW ENTRY/EXIT. 

5.3 End Point 

The entire development is sketched in Figure 11. 
Each of the remaining constraints is now the responsibility of a single com- 

ponent (controller or passenger). Some intertwining between specification and 
implementation occurred, as evidenced by the steps (3-b) and (10-a) where 
constraints were introduced that modified the denotation. The definition of the 
latter modification (introduction of the IMMEDIATE ENTRY constraint) relied 
upon concepts introduced in the course of the development (E-D and P-D), and 
hence would have been particularly hard to formulate as part of the initial 
specification. 

5.3.1 Agent Interfaces. Until now, no consideration has been given to what 
each agent’s interface should be, that is, what access an agent has to information 
belonging to other agents. In truth, these considerations have already influenced 
the development, for example, part of the motivation for introducing the E-D 
value for elevators was to serve as a communication between the controller and 
individual passengers. t 

Information belonging to the controller is the locations of elevators, their E-D 
values, and the status of their doors. 

Information belonging to an individual passenger is that passenger’s destina- 
tion and location (if inside an elevator, then that elevator; if outside, then the 
floor). 

The following interfaces provide access to sufficient information to permit 
implementation. 

-Allow the appearance agent to create new passengers and initialize their 
locations and destinations. 

-Allow the controller to observe the following: the presence of and destination 
floors of passengers inside elevators, and the presence of and direction towards 
destinations of passengers waiting for elevators. 

-Allow a passenger to observe the following: when waiting at a floor, the presence 
of and E-D values of open-doored elevators at that floor, and when riding 
inside an elevator, the location (floor) of that elevator. 

The passenger interface implies some extra activity of the controller to dis- 
play E-D values and elevator locations to passengers; this corresponds to actual 
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Fig. 11. Elevator scenario development. 
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real-world elevator systems. Similarly, the controller interface implies some extra 
activity of passengers to display their directions when waiting for elevators, and 
to display their destinations when inside elevators; unfortunately, this is not 
realistic. Rather, passenger behavior is extended to provide information from 
which the above may be deduced. In practice, passengers send signals to the 
controller (by pressing buttons at floors or inside elevators), and controller 
behavior is extended to confirm receipt of such information (by lighting pressed 
buttons, etc.). 

When appearing at a floor, a passenger presses a button corresponding to his/ 
her desired direction (unless that button is lit to show it has already been 
pressed). Similarly, when entering an elevator, a passenger presses a button 
corresponding to his/her destination (again, unless that button is already lit). 
The controller lights those buttons in response to their having been pressed, and 
unlights them when the condition no longer holds (e.g., when an “up” elevator 
has stopped and opened its doors at a floor, all the passengers waiting to go up 
will board, so the controller unlights the “up” button). From these signals, and 
knowledge of passenger behavior: the controller is able to deduce sufficient 
information for its correct implementation. 

A rather different interface that allowed more access to information between 
controller and passengers might offer radically different possibilities for the 
development. For example, suppose all passengers in the building were given 
communication devices that they used to inform the controller of their presence 
and desired destinations, and that the controller, through these devices, in- 
structed passengers when and which elevators to enter/exit. Under these circum- 
stances the controller could do more to optimize the global system performance 
by occasionally delaying a few passengers, as discussed in the footnote to 
development step (3-b). 

Clearly, there is significant intertwining between the interface and behavioral 
aspects of this specification, which has only been hinted at in this presentation. 

5.3.2 Insights into the Development. The ordering of the presented develop- 
ment’s steps does not necessarily reflect the chronological trace of its construc- 
tion. Also, blind alleys in the original construction process have been omitted. 
I will not attempt to relate the entire history, but will simply identify some of 
the insights that guided construction. Their influence can be discerned on the 
pedagogical development that has been presented. 

One key insight is that transitions inducing interaction among agents are focal 
points in the development. In our elevator scenario, these transitions are entry 
and exit of passengers, and elevator movement and door activity. Decomposition 
of constraints that span multiple transitions and agents is usually aimed at 
formulating smaller constraints on these focal point transitions. For example, 
EXIT WHEN AT DESTINATION and IMMEDIATE ENTRY constrain the focaltransi- 
tions of passenger entry; their presence allows decomposition of NO DELAY TO 
RIDERS into STOP ONLY TO ALLOW ENTRY/EXIT and RIDERS IN ELEVATOR 

‘For example, knowing that a passenger will exit an open-doored elevator when and only when its 
doors are open at that passenger’s destination floor allows the controller to deduce when passengers 
exit without requiring passengers to signal their exit in any manner. 
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COMPATIBLE, the former is a constraint on a focal point of elevator activity, and 
the latter is further decomposed. 

Introducing E-D (Elevator Direction) values as an explicit form of communi- 
cation between controller and passengers is crucial to coordinating these multiple 
agents. Clearly, the knowledge that this is a solution applied in real elevator 
systems must have influenced my construction of the development. However, it 
is interesting to speculate that I might have been able to invent this by considering 
the information implicitly shared by the MOVE IN RIDER'S P-D and RIDERS IN 
ELEVATOR COMPATIBLE constraints. 

Recognizing the opportunity to share the RIDERS IN ELEVATOR COMPATIBLE 
constraint between decomposition of NO FURTHER FROM DESTINATION and NO 
DELAY TO RIDERS is crucial in eliminating redundancy in the development. Such 
opportunistic effects are likely to arise in many developments, and since they are 
difficult to predict in advance, we must expect to have to look over a growing 
development in order to identify them, and be prepared to reorganize to take 
advantage of them. 

5.3.3 Completing the Implementation of the Controller. Having isolated the 
responsibility for each constraint to individual agents and having introduced all 
the necessary explicit signalling that each agent must make to other agents, the 
specification of the controller is now in open form; that is, it makes no use of 
closed-system concepts, although it may continue to make liberal use of other 
Gist specification constructs, including constraints. The constraints on the 
passengers and passenger appearance agent, together with the generative descrip- 
tion of how those agents behave, define the complete range of inputs to which 
the controller must respond. The constraints on the controller, together with its 
generative description, define the behavior of the controller in response to its 
inputs. 

The derivation of an implementation of the controller, from this open-system 
specification into a program expressed in some target programming language, 
falls into the category of conventional program transformation. For example, 
removing the use of a constraint on the controller is equivalent to implementing 
nondeterminism and backtracking, or, under favorable circumstances, finding a 
deterministic algorithm that will pick correct choices the first time. The general 
problem of transforming open-system specifications (which may still be far 
removed from efficient implementations) is quite hard, but falls outside the scope 
of this paper. The reader interested in how we approach the transformation of 
Gist specifications into implementations is referred to [l] and [ 111 for discussions 
and illustrations of our techniques. 

5.3.4 Development Structure. This example also illustrates the rich structure 
of the development from specification to implementation. In the domain of 
development done by program transformation, there is a clear trend toward richer 
languages for recording developments and more sophisticated mechanisms for 
applying them. See [15] for a survey of earlier research in this direction and for 
a description of Wile’s POPART system, a mechanism for (among other things) 
applying developments expressed in his development language PADDLE. We 
have applied POPART to the development of some Gist specifications, although 
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not on the scale of this elevator scenario. Fickas has gone so far as to view both 
development and specification in the framework of a more general problem- 
solving process [6]. Presumably we should also record and support the develop- 
ment from closed-system to open-system specifications in a more formal manner 
than simply the hand-sketched presentation in this paper. 

6. CONCLUSIONS 

6.1 Related Work 

Other researchers have recognized the above motivations and have recommended 
their equivalent of what I call the closed-system style of specification. The 
surveys below provide many pointers to related research. 

6.1.1 Surveys of Related Work. The Executable Metric Models Applications 
(EMMA) project, at Imperial College of Science and Technology, London, was 
initiated as the first step toward developing methods, techniques, and tools to 
support the entire software development process, including system evolution. 
Their final report [4] presents their objectives and findings, including a summary 
of existing and envisaged tools, techniques, and languages for modeling systems 
prior to implementation. They argue for “a requirement representation which 
specifies the system and its environment as a closed world. This ‘embedded’ style 
of requirement is contrasted with a ‘black box’ style, in which the system 
boundary is explicit, and the environment is modeled only as a source of inputs 
and sink for outputs.” They observe that approaches based on the rigorous 
application of correctness-preserving transformations (of which ours is an in- 
stance) are “techniques which have yet to be tested for significant applications.” 
Of the development methods in common use, the only one they find to match 
their desired software development process is the Jackson System Development 
Method, JSD [lo]. JSD is based on informal specifications, and thus does not 
have automated support for development. To its credit, however, it is in real- 
world use. 

Another survey is Zave’s description of the “operational” approach to software 
development [ 171. Zave characterizes such an approach as one that uses an 
executable model of the proposed system interacting with its environment as the 
starting point from which to derive the implementation. Cited by Zave as 
instances of the operational approach are JSD (as in the EMMA report), 
Applicative Programming, our own project, and Zave’s PAISLey project. Zave 
reminds us that many of the ideas of this approach are relatively new and 
untested, and warns that they may not deliver in practice what they deliver in 
theory; on an optimistic note, she says of these ideas: “They are interesting in 
their own right for the new perspective they provide, and if successful will yield 
substantial gains in software productivity.” 

6.1.2 Specific Related Research. Another ongoing research effort based upon 
formal specification is Zave’s own PAISLey project, described in detail in [16]. 
Zave separately specifies system behavior and system decomposition. PAISLey 
is Zave’s language for specifying system behavior. PAISLey specifications take 
the form of a collection of processes, each of which represents one of the 

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987. 



230 l Martin S. Feather 

autonomous entities in the domain being specified. The behavior of a process is 
a sequence of states, described by an applicative language definition of a successor 
function. Interactions between processes take place via “exchange functions,” 
which carry out the side effect of asynchronous interaction, but which, within a 
process itself, appear as normal functions. This is very different from Gist, which 
takes a much more global view of the whole system in its approach to specifying 
behaviors. Gist’s ability to use information drawn from the whole system in 
descriptions of both behavior and decomposition appears to have no direct 
analogue within PAISLey. 

Our research ambitiously aims to assist a wide range of software development. 
Narrowing one’s goals somewhat may permit a more immediate realization of 
techniques for some specific problem domains. For example, Merlin and Boch- 
mann [12] study a method to elaborate the specification of the “submodules” 
(components) of a system; if the system consists of a collection of submodules, 
and the system and all but one of its submodules are specified, then their method 
elaborates the specification of that remaining module. By restricting their atten- 
tion to specifications given in terms of sets of possible execution sequences, they 
emerge with a formula for the remaining module’s specification. In the further 
restricted context of finite state machines, they have a constructive algorithm 
evaluation of the formula. They see this approach as being useful in the design 
of distributed systems in general, and find a particular application in the design 
of communication protocols. 

Milner’s CCS (Calculus of Communicating Systems) [13] and Hoare’s CSP 
(Communicating Sequential Processes) [9] are well-known approaches to study- 
ing and specifying the behavior of ongoing processes. The similarity of our tree 
representations of behavior to Milner’s CCS trees has already been identified 
(Section 4.2.1). However, in marked contrast to our proposed approach, both 
CCS and CSP favor the construction of systems by the combination of subsystems 
whose only communication with one another is through explicit ports. The 
behavior of such a system is derived from the combination of the behaviors of its 
subsystems. Their disciplined construction techniques permit the well-structured 
expression of composite systems. We have chosen instead to specify the behavior 
of a composite system directly, making liberal use of constructs that draw 
information from across the entire system without regard to component bound- 
aries. Our preference is to derive the behaviors of the individual components 
from such a specification, and our emphasis is to seek structure primarily in the 
development process itself rather than in the programs that emerge from that 
process. 

6.2 Summary 

The premise of this paper has been that a composite system’s components 
should be implemented by developing them from a specification of the behavior 
required of that system and a specification of how that system is divided into 
components. This implies the need for a specification language to express the 
various stages in developments from composite systems to implementations 
of their components. 
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Our group’s specification language, Gist, appears suited to this purpose. Of 
Gist’s existing features, the following combine to be of particular utility. 

-Gist is an operational specification language. The denotation of a Gist speci- 
fication of a system is the set of acceptable histories that that system may 
exhibit. This is propitious for the specification of system behaviors that are 
ongoing and/or nondeterministic. 

-A “generate and prune” paradigm is used to determine denotation, encouraging 
a simple specification style in which a broad set of candidate histories is 
generated, clearly encompassing all the desired histories, after which pruning 
removes those histories not meeting the easily stated requirements. 

-Language constructs used in defining both the generation and pruning of the 
set of candidate histories have liberal access to information within those 
histories. It is important to stress that the specification of a composite system’s 
behavior and its decomposition into components can each be expressed in 
terms of information from throughout that system. Only the components’ 
implementations must abide by the restrictions of the decomposition. 

The following enhancements of Gist have been proposed for further supporting 
composite-system specification and development. 

-Gist’s agents model the components of a system. Agents partition the genera- 
tive portion of a specification so that each activity can be associated with the 
agent that performed it. Additionally, information may belong to agents. This 
permits modeling restrictions on the extent to which one component may 
access or affect information belonging to another component. 

-Formal meaning is given to the notions of “choice” and “responsibility” in 
terms of Gist denotations. These notions appear to play a major role in 
describing the stages of decomposition of system behavior into individual 
component behaviors. 

Further work is required to consolidate some of these specification ideas. For 
example, accommodating the notion of changing the set of agents responsible for 
a constraint during the course of a history appears possible. Extensive work 
remains to be done to provide mechanized support for the development of 
implementations from closed-system specifications. 

APPENDIX. Outline of Proof that OKPrunings is Closed under Union 

THEOREM. (From Section 4.2.4.) The set of behaviors returned by OKPrunings 
is closed under union, that is, 

Vb, SC-X, rl E OKPrunings(b, sac), 
r2 E OKPrunings(b, sac) 1 (rl U r2) E OKPrunings(b, sac). 

Its proof is provided as an illustration of the formal manipulations that are 
necessary to reason about behaviors and their pruning. 
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PROOF. Unfolding the definition of OKPrunings and labeling the conjuncts, 
the objective is to show that 

[l] rl !Z b A [4] r2 C b A 
[2] OKPruning(b, rl, sac) A [5] OKPruning(b, r2, sac) A 
[3] (Vh E rl, (sa x c) E sac 1 c(h)) [6] (Vh E r2, (sa x c) E sac 1 c(h)) 

implies 

[7] (rl U r2) G b A 
[8] OKPruning(b, (rl U r2), sac) A 
[9] (Vh E (r-1 U r2), (su X c) E sac 1 c(h)) 

[I] and [4] imply [7] (trivially), and [3] and [6] imply [9] (also trivially). 

Unfolding OKPruning in [2], [5], and [8], it remains to show that 

[lo] Vn E rl ] Vt E LAN(n, b, rl) ] LBL(t, n, rl) C RFL(t, b, sac) A 
[ll] Vn E r2 ] Vt E LAN(n, b, r2) ] LBL(t, n, r2) G RFL(t, b, sac) 

imply 

[12] Vn E (rl U r2) ] Vt E LAN(n, b, (rl U r2)) ] LBL(t, n, (rl U r2)) C 
RFL(t, b, sac) 

abbreviating LoppedAtNode as LAN, LimitedByLopping as LBL, and 
ResponsibleForLopping as RFL. 

For any n E (rl U r2), we may assume without loss of generality that n E rl, 
hence from [lo], 

Vt E LAN(n, b, rl) ] LBL(t, n, rl) G RFL(t, b, sac) 

rl C (rl U r2), so by Lemma 1, 

LAN(n, b, rl U r2) C LAN(n, b, rl), 

hence 

Vt E LAN(n, b, rl U r2) ] LBL(t, n, rl) G RFL(t, b, sac) 

rl G (rl U r2), so by Lemma 2, 

LBL(t, n, rl U r2) C LBL(t, n, rl) 

hence by transitivity of G, 

Vt E LAN(n, b, rl U r2) ] LBL(t, n, rl U r2) G RFL(t, b, sac). 

Since this holds for any n E (r-1 U r2), this proves [12] Cl 

LEMMA 1. r G rr implies LAN(n, b, rr) C LAN(n, b, r). Intuitively, retaining 
more histories reduces lopping at nodes. 

PROOF. 

LAN(n, b, rr) = TFN(n, b) - TFN(n, rr), 
abbreviating TransitionsFromNode as TFN 

r G rr, so TFN(n, r) C TFN(n, rr) (trivial), hence 
LAN(n, b, rr) G TFN(n, b) - TFN(n, r) = LAN(n, b, r) Cl 
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LEMMA 2. r C rr implies LBL(t, n, rr) s LBL(t, n, r). Intuitiuely, retaining 
more histories decreases the set of agents whose choices are limited. 

PROOF. 

LBL(t, n, rr) = (a 1 (d 1 (a x 6) E t) 4 CAN(n, rr, b)], 
abbreviating ChoicesAtNode as CAN 

r c rr, so by Lemma 3, 

hence 

CAN(n, rr, b) 2 CAN(n, r, b), 

LBL(t, n, rr) C (a 1 {d 1 (a X 6) E t) 4 CAN(n, r, b)) = LBL(t, n, r) Cl 

LEMMA 3. r G rr implies CAN@, rr, b) 2 CAN(n, r, b). Intuitiuely, retaining 
more histories increases agents’ choices. 

PROOF. 

CAN(n, rr, b) = ((d I(6 x a) E t) 1 t E TFN(n, rr)] 
r C rr, so TFN(n, rr) >_ TFN(n, r) (trivial), 

hence 

CAN(n, rr, b) > ({d 1 (a X 6) E t) 1 t E TFN(n, rr)] = CAN(n, r, b) Cl 
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